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Abstract— Interactive behavior modeling of multiple agents
is an essential challenge in simulation, especially in scenarios
when agents need to avoid collisions and cooperate at the
same time. Humans can interact with others without explicit
communication and navigate in scenarios when cooperation is
required. In this work, we aim to model human interactions
in this realistic setting, where each agent acts based on its
observation and does not communicate with others. We propose
a framework based on distributed potential games, where each
agent imagines a cooperative game with other agents and solves
the game using its estimation of their behavior. We utilize iLQR
to solve the games and closed-loop simulate the interactions. We
demonstrate the benefits of utilizing distributed imagined games
in our framework through various simulation experiments. We
show the high success rate, the increased navigation efficiency,
and the ability to generate rich and realistic interactions with
interpretable parameters. Illustrative examples are available at
https://sites.google.com/berkeley.edu/distributed-interaction.

I. INTRODUCTION

Modeling the interactive behavior of multiple agents in
different scenarios is an essential task in crowd simulation.
One of the main challenges is to model the interactive
behaviors of multiple agents, especially in narrow scenarios
where they have to avoid obstacles at the same time. The
agents’ decisions are interdependent, meaning that each
agent’s decision influences and is influenced by the decision
of the other agents. In real life, humans can cooperate with
each other without explicit communication; instead, we make
decisions based on observations. In this work, we aim to
analyze and model the interactions in a distributed game
setting without communication.

The problems can be naturally formulated as a multi-
agent planning problem with separate goals and a shared
environment. Some previous works have used centralized [1],
[2] algorithms, which solve trajectories of all agents together
to control all robots. However, centralized methods are com-
putationally expensive and require full information about the
environment and other agents. In contrast, distributed algo-
rithms separately solve the short-horizon reaction plans [3],
[4] or long-horizon trajectory plans [5], [6], [7] for each
robot. Distributed methods are more scalable and robust but
suffer from deadlocks, especially in human-like interaction
cases where no communication is allowed. For instance, as
shown in Figure 1, in a narrow-way situation, if both agents
are in the hallway, they have no collision-free navigation
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Fig. 1. A narrow-way problem challenging to solve in the distributed
and no-communication setting. There’s no collision-free for single-agent
navigation, and agents must cooperate (one moving backward to yield the
other agent) to solve the problem. We propose adding imagined cooperation
in distributed planning to simulate cooperative interactions.

plans to their goals. If agents have no information from the
others, they need to estimate other’s intentions and figure out
how to cooperate in the distributed setting.

We propose to model and solve the interaction prob-
lem in a distributed manner where each agent imagines
a cooperation game with others. There are several works
considering game-theoretic frameworks [8], [9], [10], [11]
to model cooperative behaviors. We follow the dynamic
game formulation introduced by [10], where the multi-
agent potential game is formulated into an equivalent single
optimal control problem to find cooperative plans for all
agents. We assume an “imagined” game exists in all agents’
distributed planners to predict others’ behavior and use the
iterative LQR (iLQR) to solve optimal plans. In addition to
the basic formulation in [10], we add collision avoidance to
environmental obstacles, observation range, and blind area
for agents in the optimization since they are essential causes
of human-like interactions.

We demonstrate the effectiveness of introducing the
“Imagined Potential Game (IPG)” formulation into the multi-
agent planning problem without communication. The open-
loop plans are used to simulate the closed-loop behaviors
using receding horizon control. Agents may have different
open-loop cooperative strategies but can gradually converge
to cooperative behaviors in closed-loop simulation. Exper-
iments on the narrow-way scenario with random initial-
ization empirically show the improved success rate and
navigation efficiency in simulating cooperative interactions.
Furthermore, we show the framework’s capability to generate

https://sites.google.com/berkeley.edu/distributed-interaction
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Fig. 2. An example interaction generated in T-intersection. From left to right is the closed-loop trajectory over time. Solid lines are past trajectories;
darker and lighter dotted lines are plans of ego agents and predictions of other agents (e.g., the light blue line is the predicted green agent behavior by the
blue agent). All green lines are from the green agent’s planner.

diverse and realistic interaction behaviors by varying param-
eters, such as safety distance or objective weights. Lastly,
we demonstrate that the IPG-controlled agents can robustly
interact with non-IPG-controller agents. The contribution of
this work lies in the following aspects:

1) We propose a multi-agent interaction generation frame-
work using the imagined potential games under a
distributed and no-communication setting to simulate
interactions in dense obstacle scenarios.

2) We use simulated experiments to empirically demon-
strate the improvement in success rate and navigation
efficiency for simulating complex interactions.

3) We demonstrate the algorithm can generate diverse and
realistic interactions using interpretable parameters and
interact with heterogeneous agents.

II. RELATED WORKS

A. Multi-robot planning

Multi-robot trajectory planning algorithms can be cat-
egorized based on where the computation is done. Two
main strategies to solve the problem are centralized and
distributed. Centralized planning algorithms solve the tra-
jectories for all the agents in the same problem utilizing the
global information and then send the control commands to
the robots. Most previous works use multi-agent path finding
(MAPF) solvers with trajectory optimization algorithms[1],
[12], [2], [13] to find feasible trajectories for all agents.
A series of works [9], [14], [11], [15], [16], [17], [18]
models interactions in multi-agent planning via game theo-
retic frameworks. [10] utilizes potential games [8] for multi-
agent trajectory planning with symmetric inter-agent costs.
Centralized algorithms can provide theoretical guarantees for
planning success and optimality. However, the centralized
setting cannot simulate realistic interactive behaviors in the
distributed setting, where single-agent behaviors are affected
by other agents’ online reactions.

In the distributed setting, each agent runs a separate
algorithm to compute its own trajectory. Depending on
whether communication exists between the agents. Reactive
algorithms[3], [19], [20] like Optimal Reciprocal Collision
Avoidance (ORCA) can effectively avoid collisions but fail
to avoid deadlocks in environments with dense obstacles[5].
Learning-based reactive strategies[21], [22], [23], [24] are
computationally more efficient but suffer from distribution
shifts and also experience deadlocks. Another series of works

like dMPC[6] and MADER[25] consider longer horizons and
generate sequences instead of single actions; however, they
require communication of plans for collision avoidance. [26]
turns multiple agents into distributed groups and solves the
in-group interactions, but the in-group agents are modeled
in the centralized setting. RLSS[5] uses a fully distributed
setting and requires only the current state sensing of other
agents to plan piece-wise Bézier trajectories to improve
deadlock performance. However, these methods don’t ex-
plicitly model the cooperation of agents and, therefore, have
trouble simulating interactions when the initial condition is
not feasible for collision-free planning.

B. Interaction Generation

Simulating the behaviors of actors is an important task
with a wide range of applications in transportation and
robotics research since simulators play essential roles in
training and evaluating intelligent agents like indoor robots
and autonomous vehicles. Many autonomous-driving re-
search works focus on simulating distributed agents’ behav-
iors in the simulator to generate realistic interactions and
reactive agents[27], [28], [29], [30], [31] or analyzing and
predicting interactive behaviors of heterogeneous agents[32],
[33], [34]. Previous works on crowd simulation[35] focus
more on the scalability of simulating agents[36], [37], and
grouping in the crowd[38], [39]. In this paper, we focus on
the interactions in scenarios where cooperation is required
to simulate multi-agent behaviors.

III. PRELIMINARIES

A. Distributed multi-agent planning

Assume we have N agents in the scenario. For each agent
i, 1 ≤ i ≤ N , let the vector xi(t) ∈ Rni denote the state of
agent i, let ui(t) ∈ Rmi denote the control input of agent i
at time t. Each agent follows its system dynamics

xi(k + 1) = fi(xi(k), ui(k))

Unless otherwise specified, throughout this paper, for vari-
able x, we use a subscript xi to denote agent i and a
superscript xk or x(k) to indicate the time horizon k. If
i, k are not specified, it means x for all agents or across all
time steps. x−i denotes x of all agents excluding agent i.

Obstacles in the scenario are represented by {Oj}Mj=1.
Each agent has its initial state x0

i and a target goal state in the
scenario gi. All the agents in the scenario navigate to their



target goal while avoiding collision with the environment
and other agents. Interactions happen when their planned
trajectories {xi(0), xi(1), ..., xi(T )}Ni=1 have conflicts and
need to interact to reach non-conflict new plans. Control
inputs of multiple agents U = [u0:T

1 , u0:T
2 , ..., u0:T

N ] are the
plans of all the agents. Under the distributed setting with
no communication, we assume each agent i is solving an
optimal control optimization without knowing others’ plans.

min
ui(0:T ),xi(0:T )

Ji(x(0), ui, ũ−i)

s.t. xi(k + 1) = fi(xi(k), ui(k))

h(xi, x̃−i, O) ≤ 0

(1)

Ji = Si(x(T ), T ) +
∑T−1

k=0 Li(x(k), ũ−i) is the cost
function for agent i. The stage cost Li can include dis-
tance, time, and energy costs, and the terminal cost Si can
include goal conditions. The collision-free requirements are
described using the constraints h ≤ 0. The hard constraints
in h can be added as weighted cost functions depending
on the solver used. ũ−i and x̃−i are the estimation of
other agents’ plans and states to prevent collisions since we
assume no communication between agents. To consider other
agents during planning, it needs to use predictions. In most
cases where environmental constraints are not strict, constant
velocity predictions are well enough to provide collision
avoidance planning. However, cooperative predictions are re-
quired to generate feasible interactions in cases like narrow-
way interaction in Figure 1. Therefore, we proposed to use
an Imagined Potential Game (IPG) framework to predict x̃−i

during the planning of agent i.
Comparison with the centralized or distributed with

sharing setting: In the centralized setting, U is solved
together in a single large problem given all agents’ initial
and goal states simultaneously. The weighted (αi) costs of
all agents are optimized in one problem.

min
U

N∑
i=1

αiJi(x(0), U)

s.t. x(k + 1) = f(x(k), u(k)), h(x,O) ≤ 0

(2)

The distributed setting with sharing is quite similar to the
centralized setting; plans are solved separately but are shared
with other agents, enabling accurate predictions in a dis-
tributed setting [6] for cooperation. Many game-theoretical
interaction models operate in a similar setting. The cost func-
tions of all agents are shared to consider others’ behaviors
and find equilibrium plans for all agents.

B. Differentiable Potential Game

We then introduce the definitions of dynamic games from
previous works [10]. We describe a differential game by the
compact notation of ΓT

x0
= (N, {Ui}Ni=1, {Ji}Ni=1, {fi}Ni=1),

where x0 is the initial states of all agents, and each agent
seeks to optimize its cost Ji under the dynamic fi. The cost
function Ji(x(0), U) = Si(x(T )) +

∑T−1
k=0 Li(x(k), U(k))

consists of running cost Li and terminal cost Si. We look

for Nash equilibrium solution of the dynamic game defined
by:

Definition 1: Given a differential game ΓT
x0

=
(N, {Ui}Ni=1, {Ji}Ni=1, {fi}Ni=1), a set of control signals U is
an open-loop Nash equilibrium if, for every agent i ∈ [N ]:

Ji(x0, u
∗) ≤ Ji(x0, ui, u

∗
−i) (3)

At a Nash equilibrium, no agent has the incentive to
change its current control input u∗

i as such a change would
not yield any benefits, given that all other agents’ controls
u∗
−i remain fixed. While this equilibrium solution can best

represent the cooperative multi-agent behavior in the inter-
action, finding the Nash equilibrium solution is challenging
since there are N coupled optimal control problems to solve
simultaneously. Recent progress in solving this problem,
especially in robotics applications, find efficient solutions to
the problems under certain conditions. As introduced in [10],
problems in a potential differential game form can be solved
by formulating a single centralized optimal control problem.
We summarize the result in the following theorem.

Theorem 1: For a given differential game ΓT
x0

=
(N, {Ui}Ni=1, {Ji}Ni=1, {fi}Ni=1), if for each agent i, the run-
ning cost and terminal cost functions have the structure of

Li(x(k), u(k)) = p(x(k), u(k)) + ci(x−i(k), u−i(k)) (4)

Si(x(T ) = s̄(x(T )) + si(x−i(T )) (5)

then the open-loop Nash equilibria can be found by solving
the following optimal control problem

min
U

T−1∑
k=1

p(x(k), u(k)) + s̄(x(T ))

s.t. xi(k + 1) = fi(xi(k), ui(k))

(6)

The key takeaway from this theorem is that one can
formulate a differentiable potential game if all the cost
function terms can be decomposed into potential functions
(p(·), s̄(·)) that depend on the full state and control vectors
of all the agents, and other cost terms (ci(·), si(·)) that have
no dependence on the state and control input of agent i.
Then the optimal solution for both agents can be solved by
the centralized problem Eq.6 using only p, s̄. The following
section will show how this theorem is used for distributed
no-communication settings. For each agent in the interaction,
it assumes all agents are in the potential game, but it doesn’t
know the interaction parameters for other agents. Therefore,
each agent will solve a separate Imagined Potential Game
(IPG) using estimated parameters.

C. System Notations and Assumptions

To simplify the problem, we make several assumptions on
system dynamics. We assume that all agents are modeled
using the same unicycle dynamic model. The state vector
xi = [px,i, py,i, θi, vi]

T , the control vector ui = [ai, wi]
T .

The discrete-time dynamic equations of the system are:



px,i(k + 1) = px,i(k) + Ts vi(k) cos(θi(k))

py,i(k + 1) = py,i(k) + Ts vi(k) sin(θi(k))

θi(k + 1) = θi(k) + Ts wi(k)

vi(k + 1) = vi(k) + Ts ai(k)

(7)

System notations are summarized in Table I.

TABLE I
NOTATION DESCRIBING COMMON VARIABLE.

Definition Definition (Default value)
px, py position in 2D Q state weight ([0.01, 0.01, 0, 0])
θ heading angle R input weight ([1, 1])
v velocity D safety weight (40)
a acceleration B back up weight (10)
w angular velocity r safety radius (1.2∼2.0)
O static obstacles Ts sampling time (0.1)

IV. DISTRIBUTED MULTI-AGENT INTERACTION
MODELING WITH IMAGINED POTENTIAL GAME

As described in section III-A, for interactions under the
distributed setting with no shared plans, each agent is solving
the problem in Eq. 1 but needs to estimate the future inputs
and states of other agents (x̃−i, ũ−i) to avoid collision. One
common assumption in navigation is the constant velocity
prediction, which estimates other agents’ states with the
current velocity. However, this doesn’t work for cooperation-
required cases, as shown in Figure 1. The potential game
formulation in section III-B gives optimal actions for co-
operative agents but assumes the cost parameters in Ji are
pre-known. In this paper, we use this formulation to make
cooperative predictions of other agents with an Imagined
Potential Game (IPG) setting but use estimated parameters
of other agents to solve the game.

Parameters in agent i’s cost function are the goal position
gi and the interaction parameters, including safety radius ri,
and different weights Qi, Ri, Di, Bi, each will affect the be-
havior in interaction. In this project, we assume other agents’
long-term goal positions (intentions) are already predicted.
For interaction parameters, agents will assume other agents
using the same parameters they have, e.g., r̃j = ri for all
j ̸= i. This assumption is simple, but in practice, we found
it strong enough to simulate diverse interactions, especially
when all participants are cooperative agents. For cases where
inaccurate estimation of others’ parameters causes failure, we
can update the estimation online (see section V-C).

A. Solving Potential game with estimated parameters

Based on Theorem 1, Nash equilibrium solutions of all
agents can be solved by Eq. 6 if the interaction can be
formulated into a potential game. Here, we show the running
cost function Li(x) in the potential game, consisting of the
stage cost term C0:T−1

tr,i (xi, ui), the collision avoidance term
Ca,ij(xi, xj) and the reverse avoidance term Cb,i(xi). The
stage cost includes the minimum goal distance and input
penalty terms:

C0:T−1
tr,i (xi, ui) = (xi − gi)

TQi(xi − gi) + uT
i Riui (8)

The collision avoidance term is counted when the distance
between two agents dij is smaller than the safety distance:

Ca,ij(xi, xj) =

{
(dij − dsafe)

2 ·Di, if dij < dsafe

0, others
(9)

and satisfy the symmetric property Ca,ij(xi, xj) =
Ca,ji(xj , xi) for potential game described in [10].

The reverse avoidance term discourages the agent for
moving backward:

Cb,i(xi) =

{
|vi| ·Bi, if vi < 0

0, others
(10)

To prove this running cost function is a potential game,
we can represent the p(x, u) and ci(x−i, u−i) in Theorem 1:

p(x, u) =

N∑
i=1

C0:T−1
tr,i (xi, ui)

+
∑

1≤i<j

Ca,ij(xi, xj) +

N∑
i=1

Cb,i(xi)

(11)

ci(x−i, u−i) =−
∑
j ̸=i

C0:T−1
tr,j (xj , uj)

−
∑

1≤j<k
j,k ̸=i

Ca,jk(xj , xk)−
∑
j ̸=i

Cb,j(xj)
(12)

With this representation, we show that the running cost
Li(xi, ui) = p(x, u) + ci(x−i, u−i) follows the Theorem 1,

Similarly, the terminal cost Si(x(T )) = CT
tr,i(xi, ui) =

s̄(x(T )) + si(x−i(T )), with terminal cost term:

CT
tr,i(xi, ui) = (xi(T )− gi)

TQi(xi(T )− gi) (13)

Set s̄(x(T )) and si(x−i(T )) to be :

s̄(xT ) =

N∑
i=1

CT
tr,i(xi), si(x

T
−i) = −

N∑
j ̸=i

CT
tr,j(xj) (14)

We have the required terminal cost Si(x(T )) in Theorem 1.
To address the problem in scenarios involving obstacles,

we introduce some extra constraints in addition to the exist-
ing dynamic constraints, including the state boundary con-
straint, input constraint, and obstacle avoidance constraint.
These constraints can be added as weighted costs into Ji
and don’t affect the potential game assumptions.

One important difference between centralized planning
and the IPG setting is the safety distance dsafe. For central-
ized planning, the maximum safety distance between them
is used dsafe = max(ri, rj), for IPG, each agent assumes
others have the same safety distance, dsafe,i = ri, unless it
changes its estimation.



The full IPG problem for each agent to solve is:

min
U

T−1∑
k=1

p(x(k), u(k)) + s̄(x(T ))

s.t. x(k + 1) = f(x(k), u(k))

x(0) = x0

xL ≤ x(k) ≤ xU

uL ≤ u(k) ≤ uU

robs − dis(x(k), Om) ≤ 0,m = 1...M

ri − dis(xi(k), xj(k)) ≤ 0, i, j = 1...N

(15)

where xU , xL, uU , uL are the state and input boundaries, and
robs is the radius of the circle obstacle.

Algorithm 1 outlines the process of closed-loop simu-
lation of the interaction: each agent solves the IPG using
iLQR. Following the receding horizon control manner, only
the first step for itself, denoted as u0

i is used. All agents
can solve their IPG in parallel; the closed-loop simulating
process continues until all agents are sufficiently close to
their target goals. The stored trajectories {τi}Ni=0 are the
generated interactions.

Algorithm 1 Closed-loop Distributed multi-agent Plan-
ning using IPG

Initialize: U = 0, {τi}Ni=0 = empty
while termination condition not satisfied do

for i in N do in parallel
U ← iLQR(x0, g, U,O,Qi, Ri, Di, Bi, dsafe,i)
u0
i ← U = [u0:T

1 , u0:T
2 , ..., u0:T

N ]
xnext,i ← f(x0, u

0
i )

end for
for i in N do
x0,i ← xnext,i

τi ← [τi, x0,i]
end for
x0 ← x0,i=1,...,N

end while

V. EXPERIMENTS

In this section, we present the simulating results under
the distributed multi-agent interaction setting to address the
following key questions of interest:

1) Is the proposed framework able to solve the complex
(infeasible) cases in navigation under the distributed
setting? Does it prevent the failures that result from
deadlock and collision?

2) Is the proposed framework able to generate rich in-
teractions with various parameters? Is the behavior
realistic and diverse for crowd simulation?

Environment settings: We first quantitatively evaluate and
demonstrate the interaction generation capability in the clas-
sic “narrow way” problem, the most common but challenging
indoor navigation scenario where only one agent can pass at
one time. Then, we demonstrate and analyze the interactions
with more agents or in more complex scenarios.

Comparison baselines: We use two baselines to compare
the effect of our proposed framework. 1) Vanilla: This is
the vanilla version of distributed multi-agent planning. Each
agent is running a collision avoidance planning algorithm.
The agent will follow the previous plan if the planner cannot
generate a feasible collision-free solution. Note that an open-
loop collision solution might not cause an actual collision in
the closed-loop simulation since distributed agents use wrong
predictions during open-loop planning. 2) Brake: To avoid
collision under infeasible solutions, the agent will brake and
stop if the planner solution has collision. This conservative
implementation can avoid collisions in simulation but is more
likely to cause deadlocks.
Evaluation metrics: We generate 20 test cases with ran-
domized starting and goal points. To make sure interactions
happen between agents, we enforce starting and goal points
on different sides of the hallway. The safety and navigation
parameters are randomly sampled from a pre-defined range
for different agents. The metrics for evaluating the interaction
generation are 1) Success rate: We test whether the two
agents reach the target goals without collision before the
time limit. For failure cases, we separate the failure caused
by collision and failure by deadlocks. 2) Extra interacting
time: We use the total time for agents to finish interaction
under a centralized setting as a baseline to test how much
extra time the agents spent in the distributed setting.
Observation range in distributed setting: In the distributed
setting, the ego-agent will consider other agents’ behaviors
unless they are blinded (e.g., there are obstacles on the line
connecting the two agents) or other agents are behind the
ego-agent and out of a pre-defined sensing range.

A. Interaction in “narrow way” in distributed setting

Both agents aim to reach the target positions sampled on
the opposite side while avoiding collisions with other agents
and the walls. The experiment results are shown in Table
II. The proposed method generated interactions successfully

TABLE II
EVALUATION IN NARROW-WAY SCENARIO

Success Rate Deadlock Collision AET(second)
Vanilla 13/20 2/20 5/20 +2.054
Brake 12/20 8/20 0/20 +2.308
IPG(Ours) 20/20 0/20 0/20 +0.395

AET: Average Extra Time compared to Centralized in Success cases

under all random settings. The vanilla version has a higher
success rate than the the brake version but caused more
collision during closed-loop simulating. For extra time cost
for interaction, we use the closed-loop interaction completion
time for the same setting under the centralized potential game
setting as the baseline and only calculate the average extra
time for success cases. All distributed settings experience
increased interaction completion time, but our IPG setting is
the most efficient in solving interaction.

An illustrative comparison of interaction using different
distributed interaction settings is shown in Figure 3 using
different stages of interactions. The vanilla distributed agents
stuck at a deadlock for a long time during interaction.



Text

Distributed Planning without IPG

Distributed Planning with IPG

Fig. 3. In the distributed setting, Vanilla agents without IPG are stuck at a deadlock for a long time and take extremely long time to finish interaction.
IPG agents cooperatively interact with each other.

We didn’t show the brake agents since they experienced
deadlock and got stuck from the beginning. Using IPG, with
an imagined game in mind, agents assume the presence
of cooperation and predict others’ cooperation using the
estimated parameters. This results in one agent yielding to
the other or assuming the other’s yielding in interaction.

We show how IPG recovers from open-loop deadlocks in
Figure 4. In the distributed setting, we don’t have a guarantee
that agents don’t get contradicting open-loop plans causing
deadlocks. At 3.2s for the IPG setting, the blue agent had
wrong predictions on the green agent, causing the deadlock.
However, as the interaction progressed, we observed the
predictions converging to correct ones. If agents are assigned
non-identical safety parameters, they have a low chance of
always getting symmetric and contradicting plans.

B. Realistic and Diverse Behaviors with IPG

Realistic Behavior in a T-intersection case A typical case
and extension for the narrow-way case is the T-intersection
case, where the obstacles obscure the agents until one arrives
at the intersection. In centralized planning, the optimal
cooperative strategy is to wait at the starting point and move
until the other agent passes. However, in the distributed
setting, the agent cannot observe the other agent until it
enters the intersection. Therefore, as shown in Figure 2, the
agent entered the intersection, realized it had to yield to the
other agent, and then retreated to wait. These realistic and
human-like reactions happen only in distributed settings. Full
animations of interactions and comparisons with baselines
for different scenarios can be found on the website[40]. In
general, evaluating realistic behavior in rich interactions is
hard since these interactions only happen with certain initial

conditions, and there’s no quantitative metric for realism.
We found adding imagined cooperation into planning is an
effective way to generate realistic behavior, especially in
indoor scenarios, where collision-free trajectories are often
not available for some agents.
Interactions of more than two agents Fig 5. illustrates the
distinct behaviors exhibited by three agents in a centralized
and distributed IPG setting. To demonstrate the different
behaviors of agents with different safety radii, we chose an
open area to interact. In the distributed setting, agents lack
the safety distance information of others, and they assume
that other agents possess equal safety distance. Therefore, the
agent with a larger safety distance (green) will react more
conservatively.
Effects of different interaction parameters The effect of
safety and cost parameters on agents’ behavior is shown in
Figure 6. The state cost weight Q determines the flexibility
in planning, and the safety weight D affects its conservatism
in interaction. More examples are shown on the website[40].

C. Interaction between Heterogeneous agents

In the previous two sections, we’ve demonstrated the
proposed IPG framework for simulating interactions under
the distributed setting by preventing collision and deadlocks.
An extension of this framework, as mentioned in the in-
troduction, is to use the proposed framework as evaluation
agents to interact with tested agents. This requires the IPG
agent to interact with different types of agents.

In Figure 7, we demonstrate the cases where an IPG
agent is asked to interact with a vanilla agent using constant
velocity prediction, and a ignore agent ignoring other agents,
the IPG agent can react wisely to those non-cooperative



Fig. 4. Vanilla distributed agents can collide during simulation when facing deadlocks. Agents with IPG also experienced deadlock when the imagined
cooperation didn’t match. However, IPG agents can converge to success plans in the closed-loop simulation.

Centralized Planning Distributed Planning with IPG

Fig. 5. Three agents interacting with different safety radii.

Q = 0.01 Q = 0.1

D = 100D = 1

Fig. 6. Effects of different interaction parameters on behaviors.

agents. However, IPG agents with aggressive or non-adaptive
parameters might collide or get stuck in interactions. We
claim various IPG agents can represent different human
agents in the simulator to test the robustness and general-
izability of social navigation algorithms.

VI. DISCUSSION

Conclusion: In this work, we propose an Imagined Potential
Game framework under the distributed without communica-
tion setting to model realistic interactions in complex scenar-
ios. We demonstrate the improvement of IPG agents in the

Resolved by increasing safety radiusStuck due to aggressive estimation 

Blue: IPG  Green: Vanilla Blue: IPG  Green: Vanilla

Blue: Ignore  Green: IPG Blue: Ignore  Green: IPG

Fig. 7. Interactions between of heterogeneous agents.

distributed setting in success rate and navigation efficiency
in simulating interactions and the ability to generate realistic
and diverse interactions in different scenarios.
Limitations and Future works The current framework is
analyzed in selected scenarios where cooperative interaction
is required to solve the problem. In future works, we will
adapt the framework for general in-door scenarios where
obstacles have random and non-convex shapes. We also plan
to develop a test benchmark using IPG agents with various
interaction parameters to test different social navigation
algorithms.
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